MISIMO:

A Multi-Input Single-Inductor Multi-Output Energy Harvester Employing Event-Driven MPPT Control to Achieve 89% Peak Efficiency and a 60,000x Dynamic Range in 28nm FDSOI

Sally Safwat Amin and Patrick P. Mercier University of California, San Diego, La Jolla, CA, USA

ISSCC 2018

Energy Harvesting for Powering Wearable and IoT Devices

Enable small wearable/IoT devices from ambient energy – No battery re-charging/replacement

Wireless Sensor Device Power Demand Pattern

Energy Harvesting Promise in IoT

Single-Input Harvesting Limitation

Power Aggregation for Autonomous Operation

Small Form-Factor MISIMO for Powering IoT Devices

Outline

- State-of-the-Art and Single-Inductor Challenges
- Decoupling Source MPPT and Load Regulation
- Circuit Techniques for Wide Dynamic Range
- Measurement Results
- Conclusion

Towards Small Form-Factor MISIMO

MISIMO Goals and Challenges

MISIMO Goals and Challenges

8.5: MISIMO: A Multi-Input Single-Inductor Multi-Output Energy Harvester Employing Event-Driven MPPT Control to Achieve 89% Peak Efficiency and a 60,000x Dynamic Range in 28nm FDSOI

© 2018 IEEE

International Solid-State Circuits Conference

Fractional Open Circuit Voltage (VOC) MPPT

Hysteresis Comparator for 2-D MPPT

International Solid-State Circuits Conference

MPPT Control to Achieve 89% Peak Efficiency and a 60,000x Dynamic Range in 28nm FDSOI

Time-Shared Inductor for Multi-Input Harvesting

Inductor Switching Schemes for Load Regulation

Outline

- State-of-the-Art and Single-Inductor Challenges
- Decoupling Source MPPT and Load Regulation
- Circuit Techniques for Wide Dynamic Range
- Measurement Results

MPPT and Load Regulation Decoupling

© 2018 IEEE International Solid-State Circuits Conference

Battery-Inductor Charging Time ($T_{\varphi_{1}-BAT}$) Calibration

Battery-Inductor Charging Time ($T_{\varphi_{1}-BAT}$) Calibration

© 2018 IEEE International Solid-State Circuits Conference

Outline

- State-of-the-Art and Single-Inductor Challenges
- Decoupling Source MPPT and Load Regulation
- Circuit Techniques for Wide Dynamic Range
- Measurement Results

MISIMO Event Driven Controller

© 2018 IEEE International Solid-State Circuits Conference

Duty Cycled ZCD for Lowering Quiescent Power

Leakage Dominates Low Load Losses

International Solid-State Circuits Conference

MPPT Control to Achieve 89% Peak Efficiency and a 60,000x Dynamic Range in 28nm FDSOI

Cascoding Power Switches to Lower Leakage Losses

Cascoding transistors reduces leakage in freewheel phase by 9x

Switch Size Modulation (SSM)

SSM reduces switching losses & improves efficiency by up to 24%

Outline

- State-of-the-Art and Single-Inductor Challenges
- Decoupling Source MPPT and Load Regulation
- Circuit Techniques for Wide Dynamic Range
- Measurement Results

Die Micrograph

Measured Turn-On Transient Under Battery-Power

Measured turn-on transient demonstrates MISIMO PFM control

Measured Load1-Step Response

Effect of Load Step on Source Regulation

Measured load step shows no effect on the simultaneous source regulation (for MPPT) and load regulation

Measured Light-Step

Measured light step demonstrates the capability of MISIMO to switch dynamically between different configurations

Effect of SSM on MISIMO Efficiency

Effect of $T_{\varphi_{1}-BAT}$ Calibration on MISIMO Efficiency

Comparison to State-of-Art

	Bandyopadhyay, JSSC'12	K. Chew ISSCC'13	Shrivastava, VLSI'14	Chen, ISSCC'15	Chowdary, JSSC'16	This Work
Technology	0.35µm	0.18µm	0.13µm	0.5µm	0.18µm	28nm FDSOI
No of inputs	3+battery	1+battery	1+battery	1+battery	3+supercap	3+battery
No of outputs	1+battery	2+battery	3+battery	1+battery	1+supercap	3+battery
Converter Architecture	2-stage, 1-ind Buck/Boost	1 stage, 1-ind Buck-Boost	2-stage, 1-ind Buck/Boost	1-stage, 1-ind Buck/Boost	2-stage, 1-ind Buck-Boost	1-stage, 1-ind Buck-Boost
Load regulation mechanism	PFM	PFM	PFM I _{PK} Control	PFM	PFM	PFM+PWM +SSM
MPPT	Adaptive T _{ON}	Constant T _{ON}	Constant T _{ON}	Constant T _{ON}	Constant I _{PK}	Adaptive T _{ON}
mechanism	Fixed F _{SW}	Vary F _{sw}	Vary F _{sw}	Vary F _{sw}	Vary F _{sw}	Adaptive F _{sw}
L	22µH	10µ	20µH	4.7µH	47µH	10µH
Die Area (mm ²)	~15	4.62	2.25	0.5	1.1	0.5
V _{out} (V)	1.8V	1V, 1.8V	1.2, 1.5, 3.3V	1~3.3V	1.2V~1.8V	0.4~1.4V
Quiescent P/I	2.7µA@V _{DD} =1.8V	0.4µA@V _{DD} =1V	1.2 µW	1µA@V _{DD} =4V	18nA	262nW
P _{out}	9µW~540µW	1µW ~ 10mW	<100mW	1µW~15mW	60nW~40µW‡	1µW~60mW
Dynamic Range (DR) for η>70%	60X	10,000X	16,500X‡	15,000X	667X‡	60,000X
Peak Efficiency	90%	83%	92%	93%	87%	89%

Comparison to State-of-Art

	Bandyopadhyay, JSSC'12	K. Chew ISSCC'13	Shrivastava, VLSI'14	Chen, ISSCC'15	Chowdary, JSSC'16	This Work
Technology	0.35µm	0.18µm	0.13µm	0.5µm	0.18µm	28nm FDSOI
No of inputs	3+battery	1+battery	1+battery	1+battery	3+supercap	3+battery
No of outputs	1+battery	2+battery	3+battery	1+battery	1+supercap	3+battery
Converter Architecture	2-stage, 1-ind Buck/Boost	1 stage, 1-ind Buck-Boost	2-stage, 1-ind Buck/Boost	1-stage, 1-ind Buck/Boost	2-stage, 1-ind Buck-Boost	1-stage, 1-ind Buck-Boost
Load regulation mechanism	PFM	PFM	PFM I _{PK} Control	PFM	PFM	PFM+PWM +SSM
MPPT	Adaptive T _{ON}	Constant T _{ON}	Constant T _{ON}	Constant T _{ON}	Constant I _{PK}	Adaptive T _{ON}
mechanism	Fixed F _{sw}	Vary F _{sw}	Vary F _{sw}	Vary F _{sw}	Vary F _{sw}	Adaptive F _{sw}
L	22µH	10µ	20µH	4.7µH	47µH	10µH
Die Area (mm ²)	~15	4.62	2.25	0.5	1.1	0.5
V _{out} (V)	1.8V	1V, 1.8V	1.2, 1.5, 3.3V	1~3.3V	1.2V~1.8V	0.4~1.4V
Quiescent P/I	2.7µA@V _{DD} =1.8V	0.4µA@V _{DD} =1V	1.2 µW	1µA@V _{DD} =4V	18nA	262nW
Pout	9µW~540µW	1µW ~ 10mW	<100mW	1µW~15mW	60nW~40µW‡	1µW~60mW
Dynamic Range (DR) for η>70%	60X	10,000X	16,500X‡	15,000X	667X‡	60,000X
Peak Efficiency	90%	83%	92%	93%	87%	89%

Comparison to State-of-Art

	Bandyopadhyay, JSSC'12	K. Chew ISSCC'13	Shrivastava, VLSI'14	Chen, ISSCC'15	Chowdary, JSSC'16	This Work
Technology	0.35µm	0.18µm	0.13µm	0.5µm	0.18µm	28nm FDSOI
No of inputs	3+battery	1+battery	1+battery	1+battery	3+supercap	3+battery
No of outputs	1+battery	2+battery	3+battery	1+battery	1+supercap	3+battery
Converter Architecture	2-stage, 1-ind Buck/Boost	1 stage, 1-ind Buck-Boost	2-stage, 1-ind Buck/Boost	1-stage, 1-ind Buck/Boost	2-stage, 1-ind Buck-Boost	1-stage, 1-ind Buck-Boost
Load regulation mechanism	PFM	PFM	PFM I _{PK} Control	PFM	PFM	PFM+PWM +SSM
MPPT	Adaptive T _{ON}	Constant T _{ON}	Constant T _{ON}	Constant T _{ON}	Constant I _{PK}	Adaptive T _{ON}
mechanism	Fixed F _{SW}	Vary F _{sw}	Vary F _{sw}	Vary F _{sw}	Vary F _{sw}	Adaptive F _{sw}
L	22µH	10µ	20µH	4.7µH	47µH	10µH
Die Area (mm ²)	~15	4.62	2.25	0.5	1.1	0.5
V _{out} (V)	1.8V	1V, 1.8V	1.2, 1.5, 3.3V	1~3.3V	1.2V~1.8V	0.4~1.4V
Quiescent P/I	2.7µA@V _{DD} =1.8V	0.4µA@V _{DD} =1V	1.2 μW	1µA@V _{DD} =4V	18nA	262nW
P _{out}	9µW~540µW	1µW ~ 10mW	<100mW	1µW~15mW	60nW~40µW‡	1µW~60mW
Dynamic Range (DR) for η>70%	60X	10,000X	16,500X‡	15,000X	667X‡	60,000X
Peak Efficiency	90%	83%	92%	93%	87%	89%

Outline

- State-of-the-Art and Single-Inductor Challenges
- Decoupling Source MPPT and Load Regulation
- Circuit Techniques for Wide Dynamic Range
- Measurement Results
- Conclusion

Conclusion

- Small form factor MISIMO architecture enabled by techniques that decouple the source side 2-D MPPT and load side regulation
- MISIMO achieves η_{pk}= 89% and η ≥70% across 1µW<Pout<60mW by employing efficiency enhancement techniques including:</p>
 - Switch Size Modulation (SSM) [improve efficiency by up to 24%]
 - $T_{\varphi_{1}-BAT}$ calibration (PWM) [improve efficiency by up to 34%]
 - Cascoded PS switch-structure [reduce leakage by 9x]
 - Duty-cycled ZCD [reduce P_Q by >2000x]