An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched-Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range

Loai G. Salem and Patrick P. Mercier

University of California, San Diego

ISSCC 2014
Parallelism, The Way For Higher Processing

• Higher-frequency exceeds thermal limits

High performance & low power:
- Parallel processing (multi-core)

No. of processing engines exponentially increases to meet customer expectations

Per-module voltage scaling for adapting power with processing load

Fully-integrated DC-DC Converters are required

© 2014 IEEE International Solid-State Circuits Conference

4.6: An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched-Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range

T5 SPARC, 16 Core, ISSCC’13
Outline

- On-Die DC-DC Converters
- Recursive SC Topology
- All Digital Binary Search Control
- Measurement Results
- Conclusions
Linear Voltage Regulator

• A resistive divider

<table>
<thead>
<tr>
<th>Compact</th>
<th>Very lossy when V_{DD} goes far below V_{IN}</th>
</tr>
</thead>
<tbody>
<tr>
<td>No switching noise</td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td></td>
</tr>
</tbody>
</table>

$V_{drop} = \frac{V^2}{R_{pass}}$

$\eta = \frac{V_{DD}}{V_{IN}}$

Error Amplifier

V_{ref}

V_{IN}

V_{DD}

R_{pass}

Load: R_L

© 2014 IEEE
International Solid-State Circuits Conference
Switched Capacitor DC-DC Converters

• How to convert input DC voltage?

Switched Capacitor
Switched Capacitor DC-DC Converters

• How to convert input DC voltage?

Switched Capacitor

\[
V_{IN} \quad 2V_{IN} \\
\Phi_2 \\
\Phi_1 \quad C
\]

Voltage doubler
fixed 1:2 conversion

\[
V_{DD} = 2V_{IN}
\]

\[
C \quad + \quad V_{in} \\
- \\
V_{IN}
\]

\[
V_{IN} \quad C \quad - \\
\Phi_1
\]

\[
\Phi_2
\]
Switched Capacitor DC-DC Converters

• How to convert input DC voltage?

Swap V_{IN} and R_L for $V_{IN}/2$ instead of a $2V_{IN}$

$V_{out} = 2V_{IN}$

$V_{out} = V_{IN}/2$
Why $\eta \neq 100\%$?

\[V_{out} = V_{IN}/2 \]

Large decoupling cap C_{out}
SC Loss

- Why SC $\eta \neq 100\%$?

\[q_{out} = 2q \]
\[V_{IN} q = V_{IN}/2 \]
\[2q \]
\[E_{in} = E_{out} \]

Charge-discharge diagram with equations:

\[V_{IN} \]
\[C \]
\[q \]
\[V_{out} = V_{IN}/2 \]
\[C_{out} \]
\[R_L \]

Charging and discharging processes.
SC Loss

- Why SC $\eta \neq 100\%$?

$E_{loss} = C\Delta V^2$

No R_{on} dependence

$\frac{1}{2} C \Delta V^2$

$V_{out} = \frac{V_{IN}}{2}$

$\Delta V \uparrow \Rightarrow \Delta V \downarrow$

$f_{sw} \uparrow \Rightarrow \Delta V \downarrow$

Charging

Discharging
• Loss can be modeled by R_{out}

This is how to provide continuous conversion: change R_{out} like an LDO

V_{out}

$V_{IN}/2$

R_{out}

$2R_{on}$

ΔV decreases

f_{SW}

f_{SW}

© 2014 IEEE
International Solid-State Circuits Conference

4.6: An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched-Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range

7 of 35
Series-Parallel SC Efficiency

Efficiency vs. V_{out} at $V_{in} = 2.5V$

Requires more ratios

2:1 SC
3:2 SC
3:1 SC

Efficiency [%]

Output Voltage [V]

Ideal LDO

2:1
3-ratio

V_{out} at $V_{in} = 2.5V$

© 2014 IEEE
International Solid-State Circuits Conference

4.6: An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched-Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range
Problem: Given certain C, re-use that to produce different ratios

- No. Of caps and switches increases exponentially
- Each ratio requires a unique arrangement, which is difficult to re-use among other ratios

Higher no. of ratios requires a **Modular topology**
SC 4:1 Series-Parallel

• Conventional 4:1

\[V_{out} = \frac{V_{IN}}{4} \]

<table>
<thead>
<tr>
<th>Cap no.</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW no.</td>
<td>10</td>
</tr>
</tbody>
</table>

\[V_{IN} = 4V_{out} \]

\[+ \quad V_{out} \quad + \quad V_{out} \quad - \quad V_{out} \quad - \quad V_{out} \]

\[+ \quad V_{out} \quad + \quad V_{out} \quad - \quad V_{out} \quad - \quad V_{out} \]

\[+ \quad V_{out} \quad + \quad V_{out} \quad - \quad V_{out} \quad - \quad V_{out} \]

C \quad C \quad C \quad C

C \quad C

C \quad C

\[V_{out} \]

\[V_{out} \]

\[R_L \]

\[C_{out} \]

Parallel

Series

© 2014 IEEE
International Solid-State Circuits Conference
Proposed Modular Switched-Capacitor Topology

- **Ratio = 1/4**
- Connect a second 2:1 cell \((C_2)\) between cell \((C_1)\) output & GND

\[
V_{out} = V_{IN}/4
\]

<table>
<thead>
<tr>
<th>SP</th>
<th>New 1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td></td>
</tr>
</tbody>
</table>

| Cap no. | 3 | 2 |
| SW no. | 10 | 8 |
Proposed Modular Switched-Capacitor Topology

- Ratio = 3/4
- Connect the second 2:1 cell \((C_2)\) between \(V_{\text{IN}}\) & cell \((C_1)\) output

\[
V_{\text{out}} = \frac{(V_{\text{in}} + V_{\text{in}}/2)}{2} = \frac{3V_{\text{IN}}}{4}
\]

<table>
<thead>
<tr>
<th></th>
<th>SP 3/4</th>
<th>New 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap no.</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>SW no.</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>
SC Ratio Reconfiguration

- 1/4, 3/4 are realized, how to get 1/2

Cells Stacked for 3/4

\[V_{\text{out}} = \frac{3V_{\text{IN}}}{4} \]

Route \(V_{\text{out}} \) from 1\(^{st}\) cell for 1/2

\[V_{\text{out}} = \frac{V_{\text{IN}}}{2} \]

Cells cascaded for 1/4

\[V_{\text{out}} = \frac{V_{\text{IN}}}{4} \]

Wastes the capacitance of the 2\(^{nd}\) cell, lower \(\eta \)
Recursive SC Ratio Reconfiguration

- 1/4, 3/4 are realized, how to get 1/2

Cells Stacked for 3/4

\[\text{Cells in parallel for 1/2} \]

\[V_{\text{out}} = 3V_{\text{IN}}/4 \]

Cells cascaded for 1/4

\[V_{\text{out}} = V_{\text{IN}}/2 \]

Recursive Inter-cell Connection: 100% of the Caps used among all ratios
Recursive Inter-Cell Connection

• How to realize 1/2, the switch detail

\[V_{IN} \]

\[V_{out} \]

\[\phi_1 \cdot \phi_2 \]

\[C_1 \]

\[C_2 \]

\[V_{out} \]

Ratio = 1/2
two cells in parallel
Recursive Inter-Cell Connection

- How to realize 1/4, the switch detail

\[V_{\text{IN}} \]

\[V_{\text{out}} \]

\[V_{\text{out}} \]

\[S_{R2} \quad S_{R1} \]

\[S_{R3} \quad S_{R4} \]

\[C_1 \quad C_2 \]

Ratio Reconfiguration Switches
Recursive Inter-Cell Connection

- How to realize 1/4, the switch detail

\[V_{IN} \]

\[S_{R2} \]

\[S_{R3} \]

\[V_{out} \]

\[\Phi_1 \]

\[\Phi_2 \]

\[\Phi_1 \]

\[\Phi_2 \]

\[C_1 \]

\[C_2 \]

\[\text{Disabled} \]

\[V_{out} \]

\[S_{R2} \] & \[S_{R3} \] work as OUTPUT switches
Recursive Inter-Cell Connection

• How to realize 1/4, the switch detail

V_{IN}

V_{out}

S_{R2} S_{R1}

S_2 S_1

S_{R3}

C_1 C_2

S_{R1} works as INPUT switch $S1$
Recursive Inter-Cell Connection

- How to realize $1/4$, the switch detail

$$\text{Ratio} = 1/4$$

two cells in cascade

$$V_{out} = \frac{\text{MID}}{2}$$
Recursive Inter-Cell Connection

- How to realize 3/4, the switch detail

\[V_{IN} \]

\[S_{R2} \]

\[S_{R3} S_{R4} \]

\[V_{out} \]

\[S4 \]

\(S_{R4} \) works as GND switch S4

\[\Phi_1 \]

\[\Phi_2 \]

\[\Phi_3 \]

\[\Phi_4 \]

\[GND \]

\[\text{Disabled} \]
Recursive Inter-Cell Connection

- How to realize 3/4, the switch detail

\[V_{out} = \frac{(V_{IN} + \text{MID})}{2} \]

Ratio = 3/4

two cells are stacked
• Adding a third 2:1 SC cell: \(\text{resolution} = \frac{V_{\text{in}}}{2^3} \)

\[V_{\text{out}} = \frac{V_{\text{in}}}{8} \]
Realizing 3/8 ratio

\[V_{out} = \frac{3V_{in}}{8} \]

Move 2nd cell UP
Another way to realize 3/8 ratio

\[V_{out} = \frac{(V_{in}/2 + V_{in}/4)}{2} = \frac{3V_{in}}{8} \]
Recursive 3-bit SC

• Which one is better to realize 3/8 ratio?

\[\frac{3V_{\text{IN}}}{8} \]
Recursive 3-bit SC

- Which one is better to realize 3/8 ratio?

Binary relative sizing

1st Cell is loaded by extra \(\frac{q}{2} \)

For same \(q \) output, SC is less loaded, thus lower losses

Maximizing \(V_{in} \) & GND connections maximizes \(\eta \)

Higher \(\eta \)

© 2014 IEEE International Solid-State Circuits Conference
Recursive 3-bit SC: 1/2 Realization

- Now 1/8, 3/8, 5/8, 7/8 are realized, how to achieve 1/2 using 3 cells?

Recursion:
Connect 3 cells in parallel for 1/2

Cells connected in cascade for \(n_{\text{odd}}/8 \)
Recursive 3-bit SC: 1/4, 3/4 Realization

- Now 1/8, 3/8, 5/8, 7/8, and 1/2 are realized, what about 1/4, 3/4?

\[\frac{V_{out}}{V_{in}} = \frac{3}{4} \]

Vout = \frac{3V_{in}}{4} \text{ into 2 cells}

Put the 2 slices in cascade & in parallel to the other 2 cells’ cascade

\[V_{out} = \frac{3V_{in}}{4} \]

\[V_{out} = \frac{V_{in}}{2} \]
Recursive 4-bit SC

• A 4-bit Recursive SC topology is implemented
 • Balance between complexity and flat η

Realizing 15-ratio, of high η by:
 ➢ Recursive inter-cell connection for 100% cap utilization
 ➢ Maximizing V_{in} & GND connections
 ➢ Binary relative sizing
For same silicon area: widest operating range, highest average efficiency
Typical Multi-Mode SC Control

• Compare V_{ref} (desired output) with levels from a resistor string to find desired ratio
• Challenge of large number of ratios

For 8-bit resolution~256 accurate resistors and comparators are needed
• Ratios’ threshold levels mismatch due to SC

\[R_{out} \]

\[f_{sw} \]

\[V_{out} \]

\[n/mV_{IN} \]

\[R_{out1} \]

\[R_{out2} \]

\[R_{out3} \]

\[R_2 \]

\[R_1 \]

\[R_0 \]

\[R_{2^N-1} \]

\[R_{2^N-2} \]

\[R_{out} \text{ changes from one ratio to another} \]
All-Digital Binary Search Control

• Solution: Ratios’ threshold levels are produced by the SC itself

Switching at highest f_{sw}, R_{out} is min

SC outputs the max V_{out} for certain n/m RATIO
All-Digital Binary Search Control

- Binary Search Algorithm:

 - **Strobe Reset:** \(R = \frac{1}{2} \)

 - **Apply Ratio:** \(V_{out} = R \times V_{in} \)

 - **Depth \(\leq 4 \)**

 - **End**

 - **No** \(V_{out} > V_{ref} \)

 - **Yes**

 - **Go to higher binary ratio** \(R_n = \frac{1+R_{n-1}}{2} \)

 - **Go to lower binary ratio** \(R_n = \frac{R_{n-1}}{2} \)

- **Max resolution** \(V_{in}/2^2 \)

 - **Control logic**

 - **SC**

 - **V_{in}**

 - **V_{ref}**

 - **V_{out}**

- **No resistor string**
- 1 comparator & simple gates
- No \(R_{out} \) mismatch

© 2014 IEEE International Solid-State Circuits Conference

4.6: An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched-Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range
• 8 µs response time

Measured Controller Transient Response

- **8 µs response time**

© 2014 IEEE
International Solid-State Circuits Conference

4.6: An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched-Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range
Fully Integrated Recursive 4-bit SC Prototype

- 8 2:1 cells are used to enable recursion
- Cells are binary weighted for optimal relative sizing

0.25\textmu m 2.5V bulk CMOS
MIM \sim 0.9 fF/\textmu m^2
For same silicon area: widest operating range, highest average efficiency

0.25\(\mu\)m: Cap = 3nF, \(V_{in} = 2.5\), \(I_L = 2\)mA

• This work (measured)
• \(\eta_{peak} = 85\%\)

- Measurements within 1\% of the Model

predicted \(\eta\) by model

\(\frac{4}{3} : \frac{2}{1}\)

© 2014 IEEE International Solid-State Circuits Conference
0.25μm: C = 3nF, V_{in} = 2.5, \textbf{Ratio} = 1/2

\begin{align*}
\text{Switching losses scale with lower power levels}
\end{align*}
• Tracking an input stair control voltage

4.6: An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched-Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range
Conclusions

• A new Modular SC topology comprising individual 2:1 SC
• High η through:
 • *Recursive interconnection* achieving 100% cap utilization
 • *Maximizing V_{in} & GND connections* for minimum overhead charge through the SC
 • *Optimal resource allocation* (C,G) through *BINARY* relative sizing

Highest average η & widest operating range amongst other SC topologies for same silicon area