A Rugged Wearable Modular ExG Platform Employing a Distributed Scalable Multi-Channel FM-ADC Achieving 101dB Input Dynamic Range and Motion-Artifact Resilience

J. Warchall¹, P. Theilmann², Y. Ouyang², H. Garudadri¹, P. P. Mercier¹ ¹University of California, San Diego, La Jolla, CA ²MaXentric Technologies, La Jolla, CA

JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Clinical-Grade EEG

Clinical-Grade EEG

Clinical-Grade EEG Challenges

http://people.brandeis.edu/~sekuler/

https://www.cne.psychol.cam.ac.uk/

https://tragicoptimist.wordpress.com/

Clinical-Grade EEG Challenges

http://people.brandeis.edu/~sekuler/

https://www.cne.psychol.cam.ac.uk/

https://tragicoptimist.wordpress.com/

Lots of Wiring – Fragile and Bulky Cable Sway Introduces Motion Artifacts

Commercial Wireless EEG Challenges

Emotiv

Cognionics

Commercial Wireless EEG Challenges

63dB SNR8 Channels96 Hour Battery

Emotiv

84dB SNR14 Channels12 Hour Battery

Cognionics

112dB SNR64 Channels6 Hour Battery

IMEC

Commercial Wireless EEG Challenges

63dB SNR8 Channels96 Hour Battery

Emotiv

84dB SNR14 Channels12 Hour Battery

Cognionics

112dB SNR64 Channels6 Hour Battery

Choose: Long Battery Life **OR** High Fidelity/Density

IMEC

Presentation Outline

1. Motivation

Increase Battery Life and Ruggedness for EXG Maintain High Dynamic Range and High Density

2. Approach

A Scalable Multi-Channel FM-FDM Sensor Network Integrated Gateway with ADC and UWB TX

3. Measurement Results

Single Channel Measurements Multi-Channel Measurements Biopotential Measurements UWB Performance

© 2019 IEEE International Solid-State Circuits Conference

- N wires for N Channels
 - Fragile and Bulky
 - Exacerbate Motion Artifacts

- N wires for N Channels
 - Fragile and Bulky
 - Exacerbate Motion Artifacts
- Long Wires in Baseband
 - Require Active Electrode

- N wires for N Channels
 - Fragile and Bulky
 - Exacerbate Motion Artifacts
- Long Wires in Baseband
 - Require Active Electrode
- NADCs
 - High ENOB
 - High Power Consumption

© 2019 IEEE International Solid-State Circuits Conference

© 2019 IEEE International Solid-State Circuits Conference

© 2019 IEEE International Solid-State Circuits Conference

© 2019 IEEE International Solid-State Circuits Conference

Why FM Multiplexing?

Power/Ground PMU ~12 ADC \sim FM-**FDM** bus Reference 4 Gateway module H(N) wires Warchall, et al. **ISCAS 2016 Active electrodes**

•

•

ullet

۲

۲

AM-FDM

Why FM Multiplexing?

Power/Ground PMU ~12 ADC FM-FDM bus Reference 4 Gateway module (\wedge) wires Warchall, et al. Channel N **ISCAS 2016** Active electrodes

•

•

ullet

•

۲

Why FM Multiplexing?

FM-FDM Also Reduces ADC Complexity, Maintains High DR

•

•

•

•

Phase Noise in FM VCO

Phase Noise in FM VCO

Active Electrode Nonlinearity

Active Electrode Nonlinearity

Derive Polynomial Transform

Active Electrode Nonlinearity

Two Chip System Implementation

FM Carrier -50 **Full-Scale 10mVpp 10Hz** (dB) -75 ~50KHz BW Sine Test Magnitude Message -100 **Probed** at -125 **VCO** Output -150 14.725 14.75 14.714.775 14.8 Frequency (MHz)

Full-Scale 10mVpp 10Hz Sine Test Message

After FM Demodulation

Various Amplitude Sine Test Messages

After FM Demodulation

100

Single Channel Input Step Test After FM

Demodulation

50 Amplitude (mV C -50 Input -100 Output w/o Coupling Cap Output w/ Coupling Cap -150 0.5 1.5 Time (seconds)

Single Channel **Input Step Test** After FM Demodulation **FM-ExG Active Electrodes Do Not Saturate** For 10x Input Step

Multi-Channel Measurement Results

Multi-Channel Measurement Results

Biopotential Measurement Results

Biopotential Measurement Results

Biopotential Measurement Results

UWB TX Measurement Results

International Solid-State Circuits Conference

Table of Comparison

Design	Rieger, TCAS-I 2018	O'Leary, ISSCC 2018	Schönle, JSSC 2018	Xu, ISSCC 2014	This Work
Active Electrode?	Νο			Yes	
Process [nm]	180	130	130	180	65
Electrode Bus Drive Type	-	-	_	Digital I2C	FDM via Tuned Amplifier
Acquisition Bandwidth [Hz]	7000	500	4000	100	250
Usable DR at Input [dB]	~50 (8-bit)	70	~83 (13.5-bit)	~74 (12-bit)	101
Output Bit Rate per Channel [Hz]	56000	1000000	112000	2400	1280000
Acquisition Power per Channel [µW]	96.7	1.26	285	104.4	228
Calculated Wireless TX Powei☆ per Channel [µW]	4.93	88	9.86	0.21	112.6
Total Power per Channel [µW]	101.63	89.26	294.86	104.61	340.6
FOM = Usable DR [dB] + 10 log10(BW [Hz] / Total Power per Channel [W])	128.4	137.5	154.3	133.8	159.7

Calculated using 88 pJ/bit at digital output bit rate

© 2019 IEEE International Solid-State Circuits Conference

Table of Comparison

Design	Rieger, TCAS-I 2018	O'Leary, ISSCC 2018	Schönle, JSSC 2018	Xu, ISSCC 2014	This Work	
Active Electrode?	Νο			Yes		Highost
Process [nm]	180	130	130	180	65	nignest
Electrode Bus Drive Type	-	-	_	Digital I2C	FDM via Tuned Amplifier	FOM and Input DR
Acquisition Bandwidth [Hz]	7000	500	4000	100	250	Among
Usable DR at Input [dB] <	~50 (8-bit)	70	~83 (13.5-bit)	~74 (12-bit)	101	> Active
Output Bit Rate per Channel [Hz]	56000	1000000	112000	2400	1280000	Electrode
Acquisition Power per Channel [µW]	96.7	1.26	285	104.4	228	Systems
Calculated Wireless TX Power* per Channel [µW]	4.93	88	9.86	0.21	112.6	And Traditional
Total Power per Channel [µW]	101.63	89.26	294.86	104.61	340.6	
FOM = Usable DR [dB] + 10 log10(BW [Hz] / Total Power per Channel [W])	128.4	137.5	154.3	133.8	159.7	

*Calculated using 88 pJ/bit at digital output bit rate

Conclusion

1. Motivation

Increase Battery Life and Reduce Wiring Clutter for High Fidelity/Density EEG

2. Approach

A Scalable Multi-Channel FM-FDM Sensor Network Integrated Gateway with ADC and UWB TX

3. Results

Rugged Low Power Resilient to Motion Thanks to our funding agencies:

