A 51pW Reference-Free Capacitive-Discharging Oscillator Architecture Operating at 2.8Hz

Sept. 28 2015 Hui Wang and Patrick P. Mercier

Wireless Sensing Platform

Ultra-Low-Power Timer with Low Supply Voltage

Outline

- On-Chip Oscillators
- Reference-Free Capacitive-Discharging Topology
- Frequency Stability, Area, Power
- Measurement Results
- Conclusions

Review: Relaxation Oscillator

Review: One-Hot Topology

Schmitt Trigger Based One-Hot Oscillator

Compared to Conventional Solutions

Conventional oscillators

A ramp voltage is created by charging a capacitor with a temperature-stabilized current source

Hard to make it stable, low-current, and low-area for pW-level, Hz-range applications

Compared to Conventional Solutions

Conventional oscillators

A ramp voltage is created by charging a capacitor with a temperature-stabilized current source

applications

Hard to make it stable,

for pW-level, Hz-range

low-current, and low-area

Proposed Architecture

A decaying voltage is obtained by discharging a pre-charged capacitor through a temperature-stable resistor

Easy to implement a low

temperature-coefficient

low-power, low-area

solution

resistor, enabling stable,

Proposed Architecture Provides a Low-Power, Low-Area, Low-Complexity Solution for Next-Generation Wireless Sensing Platforms

Reference-Free Capacitive-Discharging Topology

Oscillator Operation at $\Phi = 1$

Oscillator Operation at $\Phi = 2$

Frequency VS. Supply

$$T_{ideal} = 2R_{d,n}C_{d,n} \ln \frac{C_{c1,n} + C_{c2,n}}{C_{c1,n}}$$

No V_{DD} term in the equation → Rejected as common mode noise, by over 75 dB

- A reference voltage and a decaying voltage initialized from the same source
- Intrinsic relaxation-like operation ensures accurate frequency

Frequency VS. Comparator Delay

Comparator delay varies w.r.t. temperature
 The variation in comparator delay impact oscillation frequency

- Comparator delay < 10 ppm of oscillation period
- → The impact of comparator delay is minimized
- Gate-leakage employed to bias comparator

Frequency VS. Comparator Offset

UC San Diego

Frequency VS. Switch Leakage

UC San Diego

O'Halloran, ISCAS2006

Area and Power Consumption

- Capacitors are sized to be 1.1 pF
 - Dynamic power due to the charging of capacitors is 27 pW
 - Moderate area consumption

$$T_{ideal} = 2R_{d,n}C_{d,n} \ln \frac{C_{c1,n} + C_{c2,n}}{C_{c1,n}}$$

300 GΩ Resistor for Hz-range

Too large for normal resistors

How to implement this resistor?

Implementing a large, temperature-stabilized resistance using gate-leakage devices

Lee, VLSI2000

Measured Frequency VS. Temperature

Across a temperature of -40 °C to 60 °C, the frequency deviates down to ±0.05%/°C

Measured Power VS. Temperature

-40 °C to 60 °C, consumes 16pW – 129pW

Measured Allan Deviation

Achieves an Allan deviation floor under 500 ppm at room temperature

Performance Summary

Process	65 nm CMOS		
Area	25500 μm²		
Frequency	2.8 Hz (nom.)		
Power	51 pW		
Supply	0.5 V		
Temperature Accuracy	937 ppm/°C		
Temperature Range	-40 °C to 60 °C		
Supply Sensitivity	±1.9% @±10mV offset		
Allan Deviation Floor	< 500 ppm		

Hz-Range Oscillator Comparison

Hz-Range	[3]	[2]	[4]	This Work	
Timers	CICC 07	15500 09	ISSUE II		
Process	130 nm	130 nm	130 nm	65 nm	
Area [µm ²]	480	19,000	15,300 ^a	25,500	
Frequency [Hz]	0.09	11.11	~ 5	2.8	
Power [pW]	120 ^b	150 ^c	660	51	
Temperature Accuracy [ppm/°C]	1600	490	31	937	
Temperature Range [°C]	0 to 80	0 to 90	-20 to 60	-40 to 60	
Supply Sensitivity	±7.5% @±50 mV Offset	+4%/-2% @±50 mV Offset	N/A	±1.9% @±10 mV Offset	±3.5% @±20 mV Offset
Allan Deviation Floor	N/A	N/A	N/A	< 500 ppm	

^a The area of the Timer and Controller is 10,500 μ m² and 4,800 μ m², respectively.

^b Operates at 450 mV.

^c 100 pW when refreshed every 4 minutes.

Conclusion

- Reference-free capacitive-discharging structure ensures pW-level power consumption
- Intrinsic relaxation-like operation enables
 accurate frequency
 - Comparator offset cancellation through averaging
- Temperature-compensated gate-leakage as resistor ensures small area for Hz-range oscillator

Acknowledgement

STMicroelectronics for chip fabrication

A 51 pW Reference-Free Capacitive-Discharging Oscillator Architecture Operating at 2.8 Hz

Hui Wang and Patrick P. Mercier

