A Miniaturized Ultrasonic
Power Delivery System

Tzu-Chieh Chou, Ramkumar Subramanian,
Jiwoong Park, and Patrick P. Mercier

10/23/2014

UC San Diego




Motivation: Powering Medical Implants

* Medical implants are fundamentally size constrained

by anatomy.
« Size is often limited by power systems.

* Three options to deliver power:

« Embedded battery — suitable only for ultra-low-power
applications with generous available volume (e.g., Pacemaker, Meditronic
pacemaker)

 Energy harvesting — has not yet been demonstrated
for chronic applications

*( Wireless power transfer (WPT) — suitable for higher-
power applications, as a large battery can be placed
outside of the body
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Transcutaneous power transfer
via inductive coupling

Secondary

« Most implants that employ WPT are a few
cm in size

« Employ (resonant) inductive coupling for power
transfer

» Operate at 0.1-50 MHz due to higher dielectric
losses at higher frequencies

« Efficiency can exceed 90%

* Problem: there are many emerging
applications that cannot employ large coils
« E.g., smart pills, injectable sensors, etc.

 Requirement: efficient transcutaneous power
transfer with small (mm-sized) receive antennae
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Solution 1: mid-field electromagnetics

Matched Power Gain

 Full-field EM analysis shows that GHz frequencies are
~optimal for power transfer to mm-sized devices
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PROS: enables interesting mm- wavelength in tissue is large

sized implants with optimal —> focusing energy is difficult; tissue
efficiency from electromagnetics losses limit efficiency




Solution 2: ultrasonic power transfer

 Ultrasonic waves decay more slowly than mid-field EM
waves in most tissue

» Acoustic attenuation coefficient of soft tissue usually ranges from 0.6 to
3.3dB/MHz-cm

» Mid-field EM decays at 2.6dB/cm
» Opportunity for deeper implants

« Ultrasound has a much shorter wavelength than mid-field EM

* 1.5 mm at TMHz (US) compared to ~30 mm at 1GHz (EM) in most
tissues

 Ultrasonic waves suffer less from mismatch loss

 Acoustic impedance of soft tissue is typically between 1.38-106 and
1.99-10° kg/sec-m?

PROBLEM: Ultrasonic power transfer has, at the time of paper
submission, only been experimentally validated in cm-sized systems.

GOAL: Experimentally validate in a mm-sized system.




Finite Element Analysis Modeling

o Ultrasonic
-« COMSOL 4.4

 Tissue model: linear elastic material with attenuation
« Output: pressure and electric potential fields
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Finite Element Analysis Modeling

e PZT model
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Finite Element Analysis Modeling

* EM coupling
* Ansys HFSS
» Tissue model: water and muscle with dielectric properties
* Optimal frequency tuned to around 400MHz (MICS band)
 Circular coil with the same diameter of PZT receiver

. Parylene-C coating
(0.1mm thick)

0.5mm-wide caoil
(0.035mm thick)

PCB, FR4 substrate -
(0.254mm thick) B i
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Maximum available gain (MAG)

« System-level path loss set by path loss through
medium and matching performance
* Problem: difficult to adjust matching network at every
frequency

« Solution: measure two-port s-parameters, calculate MAG
assuming optimal matching network at all frequencies

« Simulation:
 Calculated by parametric sweeping the RLC values
* Experiment:
* Measured by connecting the PZT pair to a network analyzer

* In order to physically achieve the MAG, electrical
matching networks at both ports are required
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Maximum available gain (MAG)

« MAG vs. optimal frequency

* The optimal frequency is defined as the frequency at which
the minimum path loss occurs

* The figures below show the comparison between EM
coupling and ultrasonic for the medium water
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Simulation results — Mineral Oil & Water

« MAG vs. axial distance
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Simulation results - Muscle

« MAG vs. axia
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Simulation results

13

 Normalized optimal frequency vs. axial distance
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Simulation results

« Slope of MAG curve slowly converges to acoustic
attenuation coefficient
* 0.28dB/cm for mineral oil
* 0.64dB/cm for muscle
 Ultrasonic scheme starts to take the lead beyond
certain depth threshold
* 1.4cm for mineral oil
* 0.9cm for muscle
* Optimal frequency for ultrasonic scheme does not
dramatically change over distance
* Less re-tuning is needed compared to EM coupling
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Experimental setup

* Frequency range: 200 to 400kHz (containing the
fundamental and a few harmonic vibration modes)

e Medium: mineral oll

Transmitter
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Experimental results

« MAG vs. axial distance
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Experimental results

 Normalized optimal frequency vs. axial distance
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Experimental results

« Why MAG is -9dB even when aX|aI distance is 0?

* Nulls in radiation pattern

* In both (axial and lateral) directions

» Also explains the saw-tooth profile
In the measured data

* Reflections caused by the epoxy layer
* Much lower acoustic impedance compared to that of PZT’s

« Slope of MAG curve is -2.3dB/cm beyond 1cm
« Comparable to previously reported -2.5dB/cm (simulation)

 Remains competitive against mid-field EM coupling ,which
decays at the rate of -2.6dB/cm
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Conclusions
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Ultrasonic power delivery scheme was verified to be
feasible by both simulations and experiments

« MAG is less than -20dB at 2.5cm depth
It has a power delivery efficiency about -2.3dB/cm
with a 4.4mm-diameter transmitter-receiver pair

« -2.6dB/cm for a 2mm-diameter EM mid-field coupled Rx
The optimal frequency changes less dramatically
over distance

* Less re-tuning is required compared to EM coupling
PZT receivers scale better down to even lower sizes

than small antennas
* Opportunity for even smaller implants in the future



Application note for future work

» Ultrasound decays quickly /’d |
through bone and other stiff -
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ultrasound for implants that go
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