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Motivation: Powering Medical Implants
• Medical implants are fundamentally size constrained 

by anatomy. 
• Size is often limited by power systems.

• Three options to deliver power:
• Embedded battery – suitable only for ultra-low-power 

applications with generous available volume (e.g., 
pacemaker)

• Energy harvesting – has not yet been demonstrated 
for chronic applications

• Wireless power transfer (WPT) – suitable for higher-
power applications, as a large battery can be placed 
outside of the body
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Transcutaneous power transfer 
via inductive coupling

• Most implants that employ WPT are a few 
cm in size 

• Employ (resonant) inductive coupling for power 
transfer

• Operate at 0.1-50 MHz due to higher dielectric 
losses at higher frequencies 

• Efficiency can exceed 90%

• Problem: there are many emerging 
applications that cannot employ large coils

• E.g., smart pills, injectable sensors, etc.
• Requirement: efficient transcutaneous power 

transfer with small (mm-sized) receive antennae
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Solution 1: mid-field electromagnetics
• Full-field EM analysis shows that GHz frequencies are 

optimal for power transfer to mm-sized devices
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Tx=2cm

Tx=0.2cm

Tx=2cm
Rx=2mm 

Path loss > 20dB!

Poon, O’Driscoll, 
and Meng, 2010

PROS: enables interesting mm-
sized implants with optimal
efficiency from electromagnetics

CONS: wavelength in tissue is large 
à focusing energy is difficult; tissue 
losses limit efficiency



Solution 2: ultrasonic power transfer

5

• Ultrasonic waves decay more slowly than mid-field EM 
waves in most tissue

• Acoustic attenuation coefficient of soft tissue usually ranges from 0.6 to 
3.3dB/MHz⋅cm

• Mid-field EM decays at 2.6dB/cm
• Opportunity for deeper implants

• Ultrasound has a much shorter wavelength than mid-field EM
• 1.5 mm at 1MHz (US) compared to ~30 mm at 1GHz (EM) in most 

tissues

• Ultrasonic waves suffer less from mismatch loss
• Acoustic impedance of soft tissue is typically between 1.38⋅106 and 

1.99⋅106 kg/sec⋅m2

PROBLEM: Ultrasonic power transfer has, at the time of paper 
submission, only been experimentally validated in cm-sized systems.
GOAL: Experimentally validate in a mm-sized system.



Finite Element Analysis Modeling

• Ultrasonic 
• COMSOL 4.4
• Tissue model: linear elastic material with attenuation
• Output: pressure and electric potential fields
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Lumped circuit
• AC voltage 

source
• RLC matching 

network 

Piezoelectric 
constitutive eq.
• Determine 

electric field & 
strain

Helmholtz eq.
• Pressure field
• Attenuation 

caused by 
tissue



Finite Element Analysis Modeling

• PZT model
• Validation of the parameters

for the constitutive eqn.
• Part from manufacturer
• Others from least-square

optimization process of
electrical impedance
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Finite Element Analysis Modeling

• EM coupling
• Ansys HFSS
• Tissue model: water and muscle with dielectric properties
• Optimal frequency tuned to around 400MHz (MICS band)
• Circular coil with the same diameter of PZT receiver
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Maximum available gain (MAG)
• System-level path loss set by path loss through 

medium and matching performance
• Problem: difficult to adjust matching network at every 

frequency
• Solution: measure two-port s-parameters, calculate MAG 

assuming optimal matching network at all frequencies
• Simulation:

• Calculated by parametric sweeping the RLC values
• Experiment:

• Measured by connecting the PZT pair to a network analyzer
• In order to physically achieve the MAG, electrical 

matching networks at both ports are required
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• MAG vs. optimal frequency
• The optimal frequency is defined as the frequency at which 

the minimum path loss occurs
• The figures below show the comparison between EM 

coupling and ultrasonic for the medium water
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Simulation results – Mineral Oil & Water

• MAG vs. axial distance
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Simulation results - Muscle

• MAG vs. axial distance
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Simulation results

• Normalized optimal frequency vs. axial distance 
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Simulation results

• Slope of MAG curve slowly converges to acoustic 
attenuation coefficient

• 0.28dB/cm for mineral oil
• 0.64dB/cm for muscle

• Ultrasonic scheme starts to take the lead beyond 
certain depth threshold

• 1.4cm for mineral oil
• 0.9cm for muscle

• Optimal frequency for ultrasonic scheme does not 
dramatically change over distance

• Less re-tuning is needed compared to EM coupling
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Experimental setup

• Frequency range: 200 to 400kHz (containing the 
fundamental and a few harmonic vibration modes)

• Medium: mineral oil
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Experimental results

• MAG vs. axial distance
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Experimental results

• Normalized optimal frequency vs. axial distance
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Experimental results

• Why MAG is -9dB even when axial distance is 0?
• Nulls in radiation pattern

• In both (axial and lateral) directions
• Also explains the saw-tooth profile 

in the measured data

• Reflections caused by the epoxy layer
• Much lower acoustic impedance compared to that of PZT’s

• Slope of MAG curve is -2.3dB/cm beyond 1cm
• Comparable to previously reported -2.5dB/cm (simulation)
• Remains competitive against mid-field EM coupling ,which

decays at the rate of -2.6dB/cm
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Conclusions

• Ultrasonic power delivery scheme was verified to be 
feasible by both simulations and experiments

• MAG is less than -20dB at 2.5cm depth
• It has a power delivery efficiency about -2.3dB/cm 

with a 4.4mm-diameter transmitter-receiver pair
• -2.6dB/cm for a 2mm-diameter EM mid-field coupled Rx

• The optimal frequency changes less dramatically 
over distance

• Less re-tuning is required compared to EM coupling
• PZT receivers scale better down to even lower sizes 

than small antennas
• Opportunity for even smaller implants in the future
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Application note for future work

• Ultrasound decays quickly 
through bone and other stiff 
materials 

• Attenuation coefficient is about 
22dB/MHz⋅cm for bone compared 
to 1dB/MHz⋅cm for brain

• 100X path loss for a depth of 5cm 
when the frequency is 0.2MHz

• It may not be appropriate to use 
ultrasound for implants that go 
underneath bone (e.g., neural 
implants)

• Either strictly EM solutions are 
required here, or more invasive 
dual-mode solutions
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