

A Footprint-Constrained Efficiency Roadmap for on-Chip Switched-Capacitor DC-DC Converters

Loai G. Salem & Patrick P. Mercier University of California, San Diego

Voltage domain challenges in modern SoCs

Example: IBM POWER8

ISSCC'14

Challenge: powering 48 independent dynamic voltage and frequency scaling (DVFS) domains

Powering multiple domains

Source: Sunlord Inc.

- Solution 1: inductive converters
 - PROS:
 - High efficiency
 - Large Vin-Vout range possible
 - CONS:
 - Inductors are large & do not scale
- Solution 2: linear regulators
 - PROS:
 - Very small, can fully integrated into SoC
 - Stable, low-noise
 - CONS:
 - Efficiency < Vout/Vin; can be very small at large voltage conversion ratios

Switched-capacitor DC-DC converter: inherent size advantage

• Solution 3: switched-capacitor converters

- PROS:
 - Higher inherent power and energy density than inductors
 - Easily integrated on-chip (e.g., MIM, MOSCAP, DT, etc.)
 - Can leverage existing on-chip decoupling
- CONS:
 - Prior-art has limited output voltage range (limited by discrete conversion ratios)

Solving the output voltage problem via recursive switched capacitor topologies

Switched Capacitor power density

Using the International Technology Roadmap for Semiconductors (ITRS) as a guideline

This work: focus on consumer-portable SoCs (SoC-CP*)

* Using 2011 numbers, since the 2013 SoC-CP chapter is not currently available online

ITRS canonical cell area

Define F = Metal 1 half-pitch

8

Computing cell area and power density

• *ITRS*: logic and memory area can be represented by canonical cells (NAND2, SRAM) with overhead factors: $O_{logic} = 2.0$, $O_{SRAM} = 1.6$

Putting the model together

 To accommodate low-power design techniques such as DVFS, power gating, body biasing, etc., ITRS includes a power improvement factor, γ

$$P_{logic,total} = \frac{P_{dyn,logic}}{\gamma_{dyn}} + \frac{P_{static,logic}}{\gamma_{static}} \qquad P_{SRAM,total} = \frac{P_{dyn,SRAM}}{\gamma_{dyn,SRAM}} + \frac{P_{static,SRAM}}{\gamma_{static,SRAM}}$$

$$P_{chip,total} = \frac{S_{logic}P_{logic,total} + S_{SRAM}P_{SRAM,total}}{S_{logic} + S_{SRAM}}$$

Total area: $O_{logic}U_{logic}N_{gates}$

 $O_{SRAM}U_{SRAM}N_{bits}$

- N_{gates} and N_{bits} found under ITRS System Drivers chapter
- Assume 250kGate / 1Mbit ratio between logic and memory

Model results

 Input to model from ITRS process integration, devices, and structures (PIDS) chapter

Exploiting decoupling capacitance for integrated SC conversion

- All DC-DC converters, including integrated LDOs, use decoupling capacitance
- Recent work is exploiting this for SC conversion without additional area overhead

[R. Jain et al., JSSC 2014]

• Optimal amount of decoupling to suppress noise [11]:

• $C_{decap} = \frac{I}{2nf_c V_{DD}}$ Tolerated fractional supply noise

• Assuming C_{decap} is included in O_{logic} , O_{SRAM} , decap density can be found as:

• $D_{decap,logic|SRAM} = \frac{P_{total,logic|SRAM}C_{decap}}{V_{DD}I} = \frac{P_{total,logic|SRAM}}{2nf_cV_{DD}^2}$

[11] M. Pant, P. Pant, and D. Wills, "On-chip decoupling capacitor optimization using architectural level prediction," Trans. on VLSI, vol. 10, no. 3, pp. 319–326, Jun. 2002.

Scaling decoupling capacitor requirements

A footprint-constrained SC roadmap: efficiency

• 2:1 SC losses can be summarized by: [4]

 $\frac{I_L'}{D_{cap}} \frac{R_{on}C_g}{V_{DD}} \longrightarrow$ Switch resistance and capacitance $\frac{P_{loss}}{P_L} = 3 \frac{3}{2} \frac{2}{D}$ Capacitance density • Recall that $\frac{I_L}{D_{cap}} = 2nf_c V_{DD}$, and thus: $\rightarrow \tau = R_{on}C_g$ (intrinsic transistor delay) $= 3\sqrt[3]{4nf_c\tau}$ Losses of SC converter using onchip decoupling capacitance

Depends on frequency-transistor delay product

[4] L.G. Salem, P.P. Mercier, "A Recursive Switched-Capacitor DC-DC Converter Achieving 2^N-1 Ratios With High Efficiency Over a Wide Output Voltage Range," *IEEE Journal of Solid-State Circuits (JSSC)*, Dec. 2014.

A footprint-constrained SC roadmap: results

Constraining ourselves to only using area required for decoupling in future nodes, achievable power density increases with scaling, and efficiency is > 80%

UC San Diego

Conclusions

- Switched capacitor DC-DC converters offer both highefficiency and small size
 - Output voltage ranges are getting better
- Recent work has shown ultra-high power density is achievable, yet requires:
 - Inductors
 - Expensive process options
- This work presented a model describing the achievable efficiency and power density of SC converters with no area penalty by using on-chip decoupling
- 0.5W/mm² is sufficient in current-generation technologies, 1-2W/mm² easily achievable in future technologies using only MOS capacitors
- Deep-trench or resonant converters may not be necessary to meet the demands of current and future SoC-CP applications