A Flying-Domain DC-DC Converter Powering a Cortex-M0 Processor with 90.8% Efficiency

Loai G. Salem, John G. Louie, and Patrick P. Mercier University of California, San Diego

ISSCC 2016

On-Chip Voltage Regulators are Essential

 Independent supply for each module for per-block power management

On-Chip Voltage Regulators are Essential

Bring the off-chip VRs into the chip for lower cost

Outline

- New Class of DC-DC converters: Flying Power Domain
- Power Domain Interfacing Level Shifters
- All Digital Bang-Bang Control
- Measurement Results

Summary

2:1 Switched Capacitor Topology

High-Density DC-DC via Circuit Techniques

• How to get rid of the area-consuming cap Cf?

Switch the load itself instead of the cap

2-phase switched network KVL equations enforces $V_{LOAD} = V_{BAT}/2$

2:1 Flying Domain DC-DC Converter

• How to implement?

Use 4 power switches to fly the load itself

Switched Capacitor

Switched Load (Flying Domain)

Switched Capacitor Loss Model

Thevenin equivalent model

2:1 Switched Capacitor

Charge-Sharing Loss Elimination

© 2016 IEEE International Solid-State Circuits Conference

Charge-Sharing Loss Elimination

© 2016 IEEE International Solid-State Circuits Conference

Level Shifting

Inputs: require fixed-domain to flying-domain shifting Outputs: require flying-domain to fixed-domain shifting

Sampling Level-Shifters

f_{sampling} > 2f_{signal}

Sampling Level-Shifters

Multi-Ratio Flying Domain DC-DC Converter

 Fly the input terminals of the 2:1 cell through the switches of a 2nd FD converter: 4:1 FD converter

Bang-Bang Control

• Load voltage is observable through V_o

Bang-Bang Control

• Load voltage is observable through V_o

Scales switching parasitics with load current for high light-load n

Flying Domain Converter Prototype

Measured Efficiency vs. I_L

η increases at light loads (no charge-sharing loss)

© 2016 IEEE International Solid-State Circuits Conference

Measured Ring Osc. Frequency

Freq. error < 2% for V_{OSC} = 0.4-to-1.5V at \eta = 96%

© 2016 IEEE International Solid-State Circuits Conference

Measured ARM Cortex Output Waveforms

Flying the entire 1.95mm² μ P: η = 90.8% at (I_{μ P}=3.63mA, V_{BAT}=3V), while running a checksum program at 1MHz

Outputs after flying to fixed shifters

Measured Controller Waveforms

response time ~ 330ns, $50mV_{p-p}$

State of The Art

Peak efficiency vs. power density

© 2016 IEEE International Solid-State Circuits Conference 12.9: A Flying-Domain DC-DC Converter Powering

a Cortex-M0 Processor with 90.8% Efficiency

State of The Art

Peak efficiency vs. power density

© 2016 IEEE International Solid-State Circuits Conference 12.9: A Flying-Domain DC-DC Converter Powering

a Cortex-M0 Processor with 90.8% Efficiency

Summary

- A new class of DC-DC converters, flying-domain
 - Load is directly switched, instead of a passive, in a 2:1 topology, increasing power density
 - Requires SOI & doesn't eliminate Cout

