An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched-Capacitor DC-DC Converter with 0.1-to-2.2V Output Voltage Range

Loai G. Salem and Patrick P. Mercier University of California, San Diego

ISSCC 2014

Parallelism, The Way For Higher Processing

Higher-frequency exceeds thermal limits

High performance & low power:

Parallel processing (multi-core) No. of processing engines exponentially increases to meet customer expectations

Per-module voltage scaling for adapting power with processing load

Fully-integrated DC-DC Converters are required

T5 SPARC, 16 Core, ISSCC'13

© 2014 IEEE International Solid-State Circuits Conference 4.6: An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched-Capacitor DC-DC Converte with 0.1-to-2.2V Output Voltage Range

DC/DC

ITRS

Outline

- On-Die DC-DC Converters
- Recursive SC Topology
- All Digital Binary Search Control
- Measurement Results
- Conclusions

Linear Voltage Regulator

Switched Capacitor DC-DC Converters

How to convert input DC voltage?

© 2014 IEEE International Solid-State Circuits Conference

Switched Capacitor DC-DC Converters

How to convert input DC voltage?

© 2014 IEEE International Solid-State Circuits Conference

Switched Capacitor DC-DC Converters

How to convert input DC voltage?

© 2014 IEEE International Solid-State Circuits Conference

SC Loss

4.6: An 85%-Efficiency For Integrated 15-Ratio Recursive Switched-Capacitor DC-DC Converter

SC Loss

SC Loss

6 of 35

2:1 SC Model

Loss can be modeled by R_{out}

Series-Parallel SC Efficiency

© 2014 IEEE International Solid-State Circuits Conference

Higher Number of Ratios Challenge with Conventional SC Topologies

Problem: Given certain C, re-use that to produce different ratios

- No. Of caps and switches increases exponentially
- Each ratio requires a unique arrangement, which is difficult to reuse among other ratios

Higher no. of ratios requires a Modular topology

SC 4:1 Series-Parallel

Proposed Modular Switched-Capacitor Topology

Proposed Modular Switched-Capacitor Topology

SC Ratio Reconfiguration

International Solid-State Circuits Conference

with 0.1-to-2.2V Output Voltage Range

Recursive SC Ratio Reconfiguration

International Solid-State Circuits Conference

with 0.1-to-2.2V Output Voltage Range

 How to realize 1/2, the switch detail VIN **V**_{out} Vout Ratio = 1/2two cells in parallel

© 2014 IEEE International Solid-State Circuits Conference

 How to realize 1/4, the switch detail VIN $\boldsymbol{\varphi}_2$ S_{R2} S_{R1} Φ, Φ_1 **V**_{out} Vout $\boldsymbol{\mathcal{P}}_2$ $C_1 S_{R3} S_{R4} C_2$ $\boldsymbol{\Phi}_1$ $\boldsymbol{\Phi}_1$ **Ratio Reconfiguration Switches**

How to realize 1/4, the switch detail

15 of 35

 How to realize 3/4, the switch detail V_{IN} $\boldsymbol{\varphi}_2$ S_{R2} **C2** S_2 MID **V**_{out} € Disabled $V_{out} = (V_{IN} + MID)/2$ $\boldsymbol{\Phi}_1$ Ratio = 3/4 two cells are stacked 4.6: An 85%-Efficiency Fully Integrated 15-Ratio Recursive Switched-Capacitor DC-DC Converter

© 2014 IEEE International Solid-State Circuits Conference with 0.1-to-2.2V Output Voltage Range

Adding a third 2:1 SC cell: resolution = V_{in}/2³

Realizing 3/8 ratio

• Which one is better to realize 3/8 ratio?

Recursive 3-bit SC: 1/2 Realization

 Now 1/8, 3/8, 5/8, 7/8 are realized, how to achieve 1/2 using 3 cells?

Recursive 3-bit SC: 1/4, 3/4 Realization

 Now 1/8, 3/8, 5/8, 7/8, and 1/2 are realized, what about 1/4, 3/4?

- A 4-bit Recursive SC topology is implemented
 - Balance between complexity and flat η

Realizing 15-ratio, of high η by:
> Recursive inter-cell connection
for 100% cap utilization
> Maximizing V_{in} & GND
connections
> Binary relative sizing

4-bit Recursive SC Efficiency vs. Vout

Typical Multi-Mode SC Control

 Compare V_{ref} (desired output) with levels from a resistor string to find desired ratio

Typical Multi-Mode SC Control

Challenge of large number of ratios

Typical Multi-Mode SC Control

Ratios' threshold levels mismatch due to SC **R**_{out} R_{out3} sw Vout **R2^N-1 ≷**R2[№]-2 **R**out n/mV_{IN} **R**out2 ref **R2 R**_{out1} **R1 R**_{out} changes from one ratio R0 to another

All-Digital Binary Search Control

All-Digital Binary Search Control

Measured Controller Transient Response

• 8 µs response time

Fully Integrated Recursive 4-bit SC Prototype

0.25um 2.5V bulk CMOS MIM ~ 0.9 fF/um²

8 2:1 cells are used to enable recursion

Cells are binary weighted for optimal relative sizing

© 2014 IEEE International Solid-State Circuits Conference

Measured Efficiency vs. Vout

0.25µm: Cap = 3nF, V_{in} = 2.5, I_L = 2mA

International Solid-State Circuits Conference

Measured Efficiency vs. I_L

0.25 μ m: C = 3nF, V_{in} = 2.5, Ratio = 1/2

Switching losses scale with lower power levels

© 2014 IEEE International Solid-State Circuits Conference

Measured Controller Transient Response

Tracking an input stair control voltage

Conclusions

- A new Modular SC topology comprising individual 2:1 SC
- High *η* through:
 - Recursive interconnection achieving 100% cap utilization
 - Maximizing V_{in} & GND connections for minimum overhead charge through the SC
 - Optimal resource allocation (C,G) through BINARY relative sizing

Highest average η & widest operating range amongst other SC topologies for same silicon area