Stretchable biofuel cells extract energy from sweat to power wearable devices at 1mW/cm^2

A team of engineers has developed stretchable fuel cells that extract energy from sweat and are capable of powering electronics, such as LEDs and Bluetooth radios. The biofuel cells generate 10 times more power per surface area than any existing wearable biofuel cells. The devices could be used to power a range of wearable devices.

The epidermal biofuel cells are a major breakthrough in the field, which has been struggling with making the devices that are stretchable enough and powerful enough. Engineers from the University of California San Diego were able to achieve this breakthrough thanks to a combination of clever chemistry, advanced materials and electronic interfaces. This allowed them to build a stretchable electronic foundation by using lithography and by using screen-printing to make 3D carbon nanotube-based cathode and anode arrays. The developed system generated sufficient power to, for the first time, operate a Bluetooth-enabled wearable sensor, when powered exclusively from the biofuel cell.

Read more about the research HERE, or in the corresponding Energy and Environmental Science paper.

Posted in Uncategorized

Latest News